Daniel Feshbach’s and Annie Yang’s papers accepted to IROS/RA-L!

Daniel Feshbach, Cynthia Sung: Reconfiguring Non-Convex Holes in Pivoting Modular Cube Robots. In: IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6701-6708, 2021.

Abstract: We present an algorithm for self-reconfiguration of admissible 3D configurations of pivoting modular cube robots with holes of arbitrary shape and number. Cube modules move across the surface of configurations by pivoting about shared edges, enabling configurations to reshape themselves. Previous work provides a reconfiguration algorithm for admissible 3D configurations containing no non-convex holes; we improve upon this by handling arbitrary admissible 3D configurations. The key insight specifies a point in the deconstruction of layers enclosing non-convex holes at which we can pause and move inner modules out of the hole. We prove this happens early enough to maintain connectivity, but late enough to open enough room in the enclosing layer for modules to escape the hole. Our algorithm gives reconfiguration plans with O(n^2) moves for n modules.

Zhiyuan Yang, Dongsheng Chen, David J. Levine, Cynthia Sung: Origami-inspired robot that swims via jet propulsion. In: IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7145-7152, 2021.

Abstract: Underwater swimmers present unique opportunities for using bodily reconfiguration for self propulsion. Origami-inspired designs are low-cost, fast to fabricate, robust, and can be used to create compliant mechanisms useful in energy efficient underwater locomotion. In this paper, we demonstrate an origami-inspired robot that can change its body shape to ingest and expel water, creating a jet that propels it forward similarly to cephalopods. We use the magic ball origami pattern, which can transform between ellipsoidal (low volume) and spherical (high volume) shapes. A custom actuation mechanism contracts the robot to take in fluid, and the inherent mechanics of the magic ball returns the robot to its natural shape upon release. We describe the design and control of this robot and verify its locomotion in a water tank. The resulting robot is able to move forward at 6.7 cm/s (0.2 body lengths/s), with a cost of transport of 2.0.